Integrative Stochastic Variational Variable Selection
for Multi-Omics Microbiome Data Analysis
Learn about our groundbreaking research and I-SVVS package introduction
Comprehensive introduction to I-SVVS methodology and publication
Understanding the breakthrough in multi-omics microbiome analysis
Overview of the I-SVVS software package and its capabilities
I-SVVS implements a hierarchical Bayesian framework combining infinite mixture models with stochastic variational inference for scalable multi-omics analysis.
Xmicro ∈ ℕN×S
π ~ GEM(ν)
αk ~ Dir(ζ)
G0 ~ DP(γ, H)
Gj ~ DP(α, G0)
μk, Σk ~ NIW
β ~ Dir(η)
𝓛[q] = 𝔼[log p] - 𝔼[log q]
Zi = argmaxk rik
S* = {j: 𝔼[φj] > τ}
validate_input(X_micro, X_metab)
K_max = 10
(truncation level)ν = 0.1
(DP concentration)α, β ~ Dir(ζ, η)
# Initialize variational parameters
r_ik = softmax(randn(N, K))
f_ij = sigmoid(randn(N, S))
λ_star, ι_star = init_globals()
r_ik, f_ij
λ*, ι*, ξ*
ρ_t = (τ + t)^(-κ)
r_ik ∝ exp(𝔼[log π_k] + 𝔼[log p(x_i|θ_k)])
f_ij ∝ σ(𝔼[log ε_j] - 𝔼[log(1-ε_j)])
φ_ij ~ Bernoulli(ε_j)
π_k
Select top-K features where:
𝔼[φ_j] = Σ_i f_ij / N > threshold
z_i = argmax_k r_ik
clusters.csv
- Cluster assignmentsfeatures.csv
- Selected biomarkersmetrics.json
- Performance stats
Watch our comprehensive introduction to the methodology and package!
Watch Introduction VideoAuthors: Tung Dang, Yushiro Fuji, Kie Kumaishi, Erika Usui, Shungo Kobori, Takumi Sato, Yusuke Toda, Kengo Sakurai, Yuji Yamasaki, Hisashi Tsujimoto, Masami Yokota Hirai, Yasunori Ichihashi, Hiroyoshi Iwata
Journal: Briefings in Bioinformatics, 2025, 26(3) | Impact Factor: 7.9
DOI: 10.1093/bib/bbaf132
Abstract: High-dimensional multi-omics microbiome data plays an important role in elucidating microbial communities' interactions with their hosts and environment. This study proposes I-SVVS, a novel framework that addresses specific Bayesian mixture models for integrated analysis of microbiome and metabolome data. The I-SVVS approach uses an infinite Dirichlet multinomial mixture model for microbiome data and an infinite Gaussian mixture model for metabolomic data, expected to reduce computational time and improve clustering accuracy. Three datasets from soybean, mice, and humans demonstrated that I-SVVS achieved improved accuracy and faster computation compared to existing methods across all test datasets.
Key Achievement: 50x faster computation - 2.18 hours vs 2.35 days (Clusternomics) for soybean dataset analysis
Authors: Tung Dang, Kie Kumaishi, Erika Usui, Shungo Kobori, Takumi Sato, Yusuke Toda, Kengo Sakurai, Yuji Yamasaki, Hisashi Tsujimoto, Masami Yokota Hirai, Yasunori Ichihashi, Hiroyoshi Iwata
Journal: Microbiome, 2022 | Impact Factor: 16.837
DOI: 10.1186/s40168-022-01439-0
Focus: Foundation methodology for single-omics microbiome analysis using SVVS algorithm. This work established the core algorithmic framework that enabled the development of I-SVVS for multi-omics integration.
Breakthrough: First method capable of analyzing 50,000+ microbial species with 1,000+ samples
# Clone the repository git clone https://github.com/tungtokyo1108/I-SVVS.git cd I-SVVS # Install dependencies pip install -r requirements.txt # Run integrated analysis python src/Integrated_SVVS.py --microbiome data/datasetA_microbiome.csv \ --metabolome data/datasetA_metabolome.csv \ --output results/ # Run microbiome-only analysis python src/DMM_SVVS.py --data data/datasetA_microbiome.csv # Run metabolome-only analysis python src/GMM_SVVS.py --data data/datasetA_metabolome.csv
Soybean root microbiome and metabolome data with drought stress analysis
Human gut microbiome data - follow instructions from haddad_osa GitHub repo
Large-scale human microbiome data - follow MicrobiomeHD GitHub repo instructions